# Asymmetric Synthesis of Lignans of the Dibenzylbutanediol and Tetrahydrodibenzocyclooctene Series

Andrew Pelter,\*,<sup>a</sup> Robert S. Ward,\*,<sup>a</sup> D. Martin Jones<sup>a</sup> and Peter Maddocks<sup>b</sup>

<sup>a</sup> Chemistry Department, Swansea University, Singleton Park, Swansea SA2 8PP

<sup>b</sup> Wellcome Foundation, Temple Hill, Dartford, Kent DA1 5AH

Enolate anions obtained by conjugate addition to (-)-5-(1-menthyloxy)furan-2(5H)-one are quenched with benzyl bromides or iodides to yield homochiral dibenzylbutyrolactones. Desulfurisation followed by lithium aluminium hydride reduction affords homochiral 2,3-dibenzylbutane-1,4-diols, including (-)-dimethylsecoisolariciresinol and (-)-dihydroclusin. Desulfurisation followed by reduction with NaBH<sub>4</sub>/KOH gives the homochiral 2,3-dibenzylbutyrolactones (-)-dimethylmatairesinol, (-)-kusunokinin and (-)-yatein, which undergo stereoselective oxidative coupling with DDQ in trifluoroacetic acid to give homochiral tetrahydrodibenzocyclooctene lignans belonging to the isostegane series.

The wide ranging biological activities of lignans makes them prime synthetic targets.<sup>1-4</sup> In particular, there is increasing interest in the asymmetric synthesis of these compounds.<sup>5,6</sup> In the preceding paper we have described the use of (-)-5-(1-menthyloxy)furan-2(5H)-one 1 as a chiral synthon for the asymmetric synthesis of lignans belonging to the dibenzylbutyrolactone and aryltetralin series.<sup>7,8</sup> In this paper we report the extension of this strategy in combination with appropriate reduction and oxidative coupling steps, as a route for the asymmetric synthesis of dibenzylbutanediol and tetrahydro-dibenzocyclooctene† lignans (Scheme 1).



Reaction of the anion derived from 3,4-dimethoxybenzaldehyde diphenyl thioacetal or 3,4-methylenedioxybenzaldehyde diphenyl thioacetal with 1, followed by reaction of the initially formed enolate anions with appropriate benzyl bromides or iodides in the presence of DMI gave the 2,3-dibenzylbutyrolactones 2a-c in 92, 81 and 100% yields, respectively (Scheme 2).



In each case only one diastereoisomer of the product was detected.

Desulfurisation of the dibenzylbutyrolactones 2a-c using NaBH<sub>4</sub>/NiCl<sub>2</sub><sup>7-9</sup> gave 3a-c in almost quantitative yield. The <sup>1</sup>H and <sup>13</sup>C NMR spectra of 2a-c and 3a-c are listed in Tables 1 and 2. The very small coupling constants observed between 4-H and 5-H and between 4-H and 3-H confirm, as expected, that the three substituents are *trans* to one another on the five-membered ring. This is in line with the X-ray analysis of a closely related compound reported in the accompanying paper.<sup>7</sup>

Removal of the menthyloxy group from 3a-c was again achieved using a combination of NaBH<sub>4</sub> and KOH (Scheme 3).<sup>10</sup> However, when this procedure was carried out by first adding KOH in EtOH and then NaBH<sub>4</sub> an approximately 1:1 mixture of two diastereoisomeric products was obtained. These were the *cis* and *trans* isomers of **4a-c**, the *cis* isomers being formed by base-catalysed epimerisation of the intermediate aldehydes (Scheme 3). This is in contrast to our previous results with the 6-OH compounds,<sup>7,8</sup> which did not epimerise under the same conditions. Presumably, the 6-OH group was ionised in the basic solution and hence discouraged production of the dianion necessary for epimerisation. When the order of addition

<sup>&</sup>lt;sup>†</sup> Although in earlier work tetrahydrodibenzocyclooctenes have been referred to as dibenzocyclooctadienes, the former name is now preferred, being in accord with the IUPAC rules of nomenclature.



Scheme 3 Reagents: i, NaBH<sub>4</sub>; ii, KOH; iii, H<sup>+</sup>, iv, LiAlH<sub>4</sub>; v, DDQ/TFA

of the reagents was reversed and an excess of NaBH<sub>4</sub> was added to **3a–c** followed by dropwise addition of KOH/EtOH, a single diastereoisomer **4a–c** was obtained in each case in 60, 55 and 45% yields, respectively (Scheme 3). The <sup>1</sup>H and <sup>13</sup>C NMR spectra of (–)-dimethylmatairesinol **4a**,<sup>11</sup> (–)kusunokinin **4b**<sup>12,13</sup> and (–)-yatein **4c**<sup>14</sup> are listed in Tables 1 and 2.

Reduction of **3a–c** with lithium aluminium hydride gave the *threo-2*,3-dibenzylbutane-1,4-diols **5a–c**. The <sup>1</sup>H and <sup>13</sup>C NMR spectra of (–)-dimethylsecoisolariciresinol **5a**,<sup>12</sup> **5b**, and (–)-dihydroclusin **5c**<sup>15</sup> are listed in Tables 3 and 4.

We have previously shown that 3,4-dibenzylbutane derivatives undergo oxidative coupling to yield tetrahydrodibenzocyclooctenes on treatment with DDQ in trifluoroacetic acid.<sup>16</sup> Application of this reaction to homochiral **4a** and **4b** gave homochiral dibenzocyclooctene lactones **6a** and **6b** in 56 and 34% yield respectively (Scheme 3). In this case the rigidity of the homochiral *trans*-lactone system has imposed a single chirality on the newly formed diphenyl unit. The <sup>1</sup>H and <sup>13</sup>C NMR spectra of **6a** and **6b** are listed in Tables 5 and 6. The zero couplings observed for one of the methylene protons at both C-5 and C-8 to their vicinal neighbours and the positions of C-6 and C-7 in the <sup>13</sup>C NMR spectra indicated that the compounds belong to the isostegane series.<sup>17-19</sup> Attempts to carry out the same reaction on **4c** in order to prepare **6c** were unsuccessful.

#### Experimental

IR spectra were recorded on a Pye Unicam SP1050 spectrometer. UV spectra were recorded on a Philips PU8720 scanning spectrometer. <sup>1</sup>H NMR spectra were recorded on a Bruker 250WM spectrometer at 250 MHz and, where indicated, a Hitachi Perkin-Elmer R24B spectrometer at 60 MHz. The highfield spectra were recorded using Bruker spectrometers at 300, 360 and 400 MHz. <sup>13</sup>C NMR spectra were recorded on a Bruker 250WM spectrometer at 62.5 MHz. All spectra used tetramethylsilane as the internal standard, and were run in deuteriated chloroform, unless otherwise stated. The mass spectra were recorded on a VG-12-250 low-resolution quadrupole mass spectrometer, whilst accurate mass measurements were obtained from a ZAB-E high-resolution, double focusing mass spectrometer. M.p.s were recorded on an Electrothermal digital melting point apparatus, and are uncorrected. Optical rotation values,  $[\alpha]_D$ , were obtained from a Perkin-Elmer 141 polarimeter, using a sodium lamp at 589 nm and are recorded in units of  $10^{-1} \text{ deg cm}^2 \text{ g}^{-1}$ .

The analytical HPLC work was carried out on a Milton Roy 3100 Spectromonitor, 3000 constaMetric pump, CI-4100 integrator, and used an Apex II ODS 5  $\mu$ m column. Preparative HPLC work was carried out on a Gilson 806 manometric module, 305 pump, 115 UV detector, and used a L. Chrosorb BP18 10  $\mu$ m Knauer preparative column. Thin layer chromatography was carried out on Merck 5735 Kieselgel 60 F<sub>254</sub> fluorescent plates. Flash chromatography was performed with silica gel (Merck 9385, Kieselgel 60, 230–400 mesh). Small-scale purifications were conducted on a Chromatotron 7924 using 1, 2 or 4 mm plates prepared from silica gel (Merck 7749, Kieselgel 50 F<sub>254</sub> gipshaltig).

The reactions carried out under an inert atmosphere refer to the use of argon and 'white spot' nitrogen used directly from the cylinder. Tetrahydrofuran was dried by being stirred overnight over calcium hydride, passed down a dry alumina column, and then distilled from sodium wire and benzophenone. Diethyl ether and dichloromethane were dried by passage down a dry alumina column and then distillation from calcium hydride. Dimethylformamide was distilled from calcium hydride, whilst dry toluene and benzene were prepared by distillation from calcium hydride and stored over sodium wire. Solutions of butyllithium in hexane were obtained from Aldrich and were regularly estimated.<sup>20,21</sup> Lithium aluminium hydride was used as a solid, or a solution in dry tetrahydrofuran, estimated as described by Brown.<sup>22</sup>

Preparation of (-)-(3R,4R,5R)-3-(3',4'-Dimethoxybenzyl)-4- $[3'',4''-dimethoxy-\alpha,\alpha-bis(phenylthio)benzyl]$ -5-(1-menthyloxy)butyrolactone **2a**.—A solution of 3,4-dimethoxybenzaldehyde diphenyl thioacetal (5.06 g, 13.8 mmol) in dry THF (70 cm<sup>3</sup>), under argon, was cooled to -78 °C and stirred. To this was added, via a syringe, BuLi (2.30 mol dm<sup>-3</sup>; 6.90 cm<sup>3</sup>, 15.9 mmol, 1.15 mol equiv.), and stirring was then continued at -78 °C for 3 h. After this time, pre-cooled (-78 °C) (-)-5-(1-menthyloxy-

Table 1 <sup>1</sup>H NMR spectra of dibenzylbutyrolactone derivatives \*

|   |                                                                                                                                                                                                                                   | 2a                                                                                                                                                                                                                                                                                           | 2b                                                                                                                                                    | 2c                                                                                                                                                  | 3a                                                                                                                                                                                                           | 3b                       |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
|   | 3-H                                                                                                                                                                                                                               | 3.36m                                                                                                                                                                                                                                                                                        | 3.32m                                                                                                                                                 | 3.40m                                                                                                                                               | 2.57m                                                                                                                                                                                                        | 2.53m                    |
|   | 4-H                                                                                                                                                                                                                               | 3.06br s                                                                                                                                                                                                                                                                                     | 3.04br s                                                                                                                                              | 2.87br s                                                                                                                                            | 2.37m                                                                                                                                                                                                        | 2.31m                    |
|   | 5-H.                                                                                                                                                                                                                              | 5.75br s                                                                                                                                                                                                                                                                                     | 5.73br s                                                                                                                                              | 6.03br s                                                                                                                                            | 5 378                                                                                                                                                                                                        | 5 385                    |
|   | 5-H.                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                              |                                                                                                                                                       |                                                                                                                                                     | 0.078                                                                                                                                                                                                        | 5.505                    |
|   | 6-H                                                                                                                                                                                                                               | 2 95_3 (J3m (2 H)                                                                                                                                                                                                                                                                            | 2.96.3.01m(2.H)                                                                                                                                       | 3 314 (13 6)                                                                                                                                        | $\frac{1}{2}$ 00dd (4 0 127)                                                                                                                                                                                 | $\frac{-}{20644(41125)}$ |
|   | 6.H                                                                                                                                                                                                                               | 2.95 5.0511 (2.11)                                                                                                                                                                                                                                                                           | 2.90–3.0111 (2.11)                                                                                                                                    | 2.0044(10.0, 12.6)                                                                                                                                  | 2.3300 (4.3, 13.7)                                                                                                                                                                                           | 2.9000(4.1, 15.5)        |
|   | 7 LI                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                              |                                                                                                                                                       | 3.0000 (10.0, 13.0)                                                                                                                                 | 2.8000 (9.8, 13.7)                                                                                                                                                                                           | 2.7000 (9.6, 13.5)       |
|   | 7-11A                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                              |                                                                                                                                                       |                                                                                                                                                     | 2.73 dd (4.45, 9.1)                                                                                                                                                                                          | 2./2m                    |
|   | /-H <sub>B</sub>                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                              |                                                                                                                                                       |                                                                                                                                                     | 2.38d (9.1)                                                                                                                                                                                                  | 2.32d (9.9)              |
|   | I-H†                                                                                                                                                                                                                              | 3.41dt (4.0, 10.6)                                                                                                                                                                                                                                                                           | 3.41dt (3.4, 9.8)                                                                                                                                     | 3.56dt (3.7, 10.0)                                                                                                                                  | 3.49dt (3.9, 10.0)                                                                                                                                                                                           | 3.49dt (3.4, 10.0)       |
|   | OMe                                                                                                                                                                                                                               | 3.85s                                                                                                                                                                                                                                                                                        | 3.85s                                                                                                                                                 | 3.83s                                                                                                                                               | 3.85s                                                                                                                                                                                                        | 3.84s                    |
|   | OMe                                                                                                                                                                                                                               | 3.85s                                                                                                                                                                                                                                                                                        | 3.66s                                                                                                                                                 | 3.83s                                                                                                                                               | 3.85s                                                                                                                                                                                                        | 3.74s                    |
|   | OMe                                                                                                                                                                                                                               | 3.80s                                                                                                                                                                                                                                                                                        |                                                                                                                                                       | 3.74s                                                                                                                                               | 3.77s                                                                                                                                                                                                        |                          |
|   | OMe                                                                                                                                                                                                                               | 3.68s                                                                                                                                                                                                                                                                                        |                                                                                                                                                       |                                                                                                                                                     | 3.77s                                                                                                                                                                                                        |                          |
|   | OCH <sub>2</sub> O                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              | 5.90s (2 H)                                                                                                                                           | 5.95d (1.4)                                                                                                                                         |                                                                                                                                                                                                              | 5.92s                    |
|   | -                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                              |                                                                                                                                                       | 5.90d (1.4)                                                                                                                                         |                                                                                                                                                                                                              | 5.895                    |
|   | Me                                                                                                                                                                                                                                | 0 90d (6 6)                                                                                                                                                                                                                                                                                  | 0.904 (6.5)                                                                                                                                           | 0.964 (6.5)                                                                                                                                         | 0.904 (7.2)                                                                                                                                                                                                  | 0.904 (6.6)              |
|   | Me                                                                                                                                                                                                                                | 0.88d(7.2)                                                                                                                                                                                                                                                                                   | 0.894(7.0)                                                                                                                                            | 0.924(7.1)                                                                                                                                          | 0.80m                                                                                                                                                                                                        | 0.90 <b>u</b> (0.0)      |
|   | Me                                                                                                                                                                                                                                | 0.000(7.2)                                                                                                                                                                                                                                                                                   | 0.000(7.0)                                                                                                                                            | 0.320(7.1)                                                                                                                                          | 0.0911                                                                                                                                                                                                       | 0.784 (7.0)              |
|   | IVIC                                                                                                                                                                                                                              | 0.710 (0.9)                                                                                                                                                                                                                                                                                  | 0.710 (0.9)                                                                                                                                           | 0.790 (0.9)                                                                                                                                         | ()                                                                                                                                                                                                           | (701(0.0))               |
|   |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                              |                                                                                                                                                       |                                                                                                                                                     | 0.010 (8.5)                                                                                                                                                                                                  | 6.70d (8.0)              |
|   |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                              |                                                                                                                                                       | <pre>&lt;</pre>                                                                                                                                     | 6.59d (7.95)                                                                                                                                                                                                 | 6.61d (7.7)              |
|   | Arom                                                                                                                                                                                                                              | 6.6-/.3m                                                                                                                                                                                                                                                                                     | 6.5–7.3m                                                                                                                                              | 6.4–7.3m                                                                                                                                            | 6.43s                                                                                                                                                                                                        | 6.50d (8.0)              |
|   |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                              |                                                                                                                                                       |                                                                                                                                                     | 6.42d (8.0)                                                                                                                                                                                                  | 6.43d (7.9)              |
|   |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                              |                                                                                                                                                       |                                                                                                                                                     | 6.36d (8.35)                                                                                                                                                                                                 | 6.34s                    |
|   |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                              |                                                                                                                                                       |                                                                                                                                                     | 6.33s                                                                                                                                                                                                        | 6.31s                    |
|   |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                              |                                                                                                                                                       |                                                                                                                                                     |                                                                                                                                                                                                              |                          |
|   |                                                                                                                                                                                                                                   | 3c                                                                                                                                                                                                                                                                                           | <b>4a</b>                                                                                                                                             | 4b                                                                                                                                                  | 4c                                                                                                                                                                                                           |                          |
|   | 2.11                                                                                                                                                                                                                              | 3c                                                                                                                                                                                                                                                                                           | <b>4a</b>                                                                                                                                             | <b>4b</b>                                                                                                                                           | 4c                                                                                                                                                                                                           |                          |
| : | 3-H                                                                                                                                                                                                                               | 3c<br>2.70m                                                                                                                                                                                                                                                                                  | <b>4a</b><br>2.5–2.65m (2 H)                                                                                                                          | <b>4b</b><br>2.45–2.65m (2 H)                                                                                                                       | 4c<br>2.68m                                                                                                                                                                                                  |                          |
|   | 3-H<br>4-H                                                                                                                                                                                                                        | 3c<br>2.70m<br>2.42m<br>5.201(11)                                                                                                                                                                                                                                                            | <b>4a</b><br>2.5–2.65m (2 H)                                                                                                                          | <b>4b</b><br>2.45–2.65m (2 H)                                                                                                                       | 4c<br>2.68m<br>2.59m                                                                                                                                                                                         |                          |
|   | 3-H<br>4-H<br>5-H <sub>A</sub>                                                                                                                                                                                                    | <b>3c</b><br>2.70m<br>2.42m<br>5.39d (1.1)                                                                                                                                                                                                                                                   | <b>4a</b><br>2.5–2.65m (2 H)<br>4.13dd (6.35, 8.8)                                                                                                    | <b>4b</b><br>2.45–2.65m (2 H)<br>4.15dd (6.6, 9.1)                                                                                                  | <b>4c</b><br>2.68m<br>2.59m<br>4.23dd (7.2, 8.9)                                                                                                                                                             |                          |
|   | 3-H<br>4-H<br>5-H <sub>A</sub><br>5-H <sub>B</sub>                                                                                                                                                                                | <b>3c</b><br>2.70m<br>2.42m<br>5.39d (1.1)                                                                                                                                                                                                                                                   | <b>4a</b><br>2.5-2.65m (2 H)<br>4.13dd (6.35, 8.8)<br>3.89m                                                                                           | <b>4b</b><br>2.45–2.65m (2 H)<br>4.15dd (6.6, 9.1)<br>3.88m                                                                                         | <b>4c</b><br>2.68m<br>2.59m<br>4.23dd (7.2, 8.9)<br>3.92d (7.2)                                                                                                                                              |                          |
|   | 3-H<br>4-H<br>5-H <sub>A</sub><br>5-H <sub>B</sub><br>6-H <sub>A</sub>                                                                                                                                                            | <b>3c</b><br>2.70m<br>2.42m<br>5.39d (1.1)<br>                                                                                                                                                                                                                                               | <b>4a</b><br>2.5–2.65m (2 H)<br>4.13dd (6.35, 8.8)<br>3.89m<br>2.95m (2 H)                                                                            | <b>4b</b><br>2.45-2.65m (2 H)<br>4.15dd (6.6, 9.1)<br>3.88m<br>2.95dd ( <b>4</b> .9, 14.05)                                                         | <b>4c</b><br>2.68m<br>2.59m<br>4.23dd (7.2, 8.9)<br>3.92d (7.2)<br>3.29dd (5.0, 13.8)                                                                                                                        |                          |
|   | 3-H<br>4-H<br>5-H <sub>A</sub><br>5-H <sub>B</sub><br>6-H <sub>A</sub><br>6-H <sub>B</sub>                                                                                                                                        | <b>3c</b><br>2.70m<br>2.42m<br>5.39d (1.1)<br>                                                                                                                                                                                                                                               | <b>4a</b><br>2.5–2.65m (2 H)<br>4.13dd (6.35, 8.8)<br>3.89m<br>2.95m (2 H)                                                                            | <b>4b</b><br>2.45–2.65m (2 H)<br>4.15dd (6.6, 9.1)<br>3.88m<br>2.95dd (4.9, 14.05)<br>2.83dd (6.6, 14.05)                                           | <b>4c</b><br>2.68m<br>2.59m<br>4.23dd (7.2, 8.9)<br>3.92d (7.2)<br>3.29dd (5.0, 13.8)<br>3.07dd (8.15, 13.8)                                                                                                 |                          |
|   | 3-H<br>4-H<br>5-H <sub>A</sub><br>5-H <sub>B</sub><br>6-H <sub>A</sub><br>6-H <sub>B</sub><br>7-H <sub>A</sub>                                                                                                                    | <b>3c</b><br>2.70m<br>2.42m<br>5.39d (1.1)<br>                                                                                                                                                                                                                                               | <b>4a</b><br>2.5–2.65m (2 H)<br>4.13dd (6.35, 8.8)<br>3.89m<br>2.95m (2 H)<br>2.5–2.65m (2 H)                                                         | <b>4b</b><br>2.45–2.65m (2 H)<br>4.15dd (6.6, 9.1)<br>3.88m<br>2.95dd (4.9, 14.05)<br>2.83dd (6.6, 14.05)<br>2.45–2.65m (2 H)                       | 4c<br>2.68m<br>2.59m<br>4.23dd (7.2, 8.9)<br>3.92d (7.2)<br>3.29dd (5.0, 13.8)<br>3.07dd (8.15, 13.8)<br>2.68dd (5.0, 12.6)                                                                                  |                          |
|   | 3-H<br>4-H<br>5-H <sub>A</sub><br>5-H <sub>B</sub><br>6-H <sub>A</sub><br>6-H <sub>B</sub><br>7-H <sub>A</sub><br>7-H <sub>B</sub>                                                                                                | 3c<br>2.70m<br>2.42m<br>5.39d (1.1)<br>                                                                                                                                                                                                                                                      | <b>4a</b><br>2.5-2.65m (2 H)<br>4.13dd (6.35, 8.8)<br>3.89m<br>2.95m (2 H)<br>2.5-2.65m (2 H)                                                         | <b>4b</b><br>2.45–2.65m (2 H)<br>4.15dd (6.6, 9.1)<br>3.88m<br>2.95dd (4.9, 14.05)<br>2.83dd (6.6, 14.05)<br>2.45–2.65m (2 H)                       | 4c<br>2.68m<br>2.59m<br>4.23dd (7.2, 8.9)<br>3.92d (7.2)<br>3.29dd (5.0, 13.8)<br>3.07dd (8.15, 13.8)<br>2.68dd (5.0, 12.6)<br>2.44dd (8.2, 12.6)                                                            |                          |
|   | 3-H<br>4-H<br>5-H <sub>A</sub><br>5-H <sub>B</sub><br>6-H <sub>B</sub><br>7-H <sub>A</sub><br>7-H <sub>A</sub><br>7-H <sub>B</sub><br>1-H <sup>†</sup>                                                                            | 3c<br>2.70m<br>2.42m<br>5.39d (1.1)<br>                                                                                                                                                                                                                                                      | <b>4a</b><br>2.5–2.65m (2 H)<br>4.13dd (6.35, 8.8)<br>3.89m<br>2.95m (2 H)<br>2.5–2.65m (2 H)                                                         | <b>4b</b><br>2.45–2.65m (2 H)<br>4.15dd (6.6, 9.1)<br>3.88m<br>2.95dd (4.9, 14.05)<br>2.83dd (6.6, 14.05)<br>2.45–2.65m (2 H)                       | <b>4c</b><br>2.68m<br>2.59m<br>4.23dd (7.2, 8.9)<br>3.92d (7.2)<br>3.29dd (5.0, 13.8)<br>3.07dd (8.15, 13.8)<br>2.68dd (5.0, 12.6)<br>2.44dd (8.2, 12.6)                                                     |                          |
|   | 3-H<br>4-H<br>5-H <sub>A</sub><br>5-H <sub>B</sub><br>6-H <sub>A</sub><br>6-H <sub>B</sub><br>7-H <sub>B</sub><br>1-H <sup>†</sup><br>OMe                                                                                         | 3c<br>2.70m<br>2.42m<br>5.39d (1.1)<br>                                                                                                                                                                                                                                                      | <b>4a</b><br>2.5-2.65m (2 H)<br>4.13dd (6.35, 8.8)<br>3.89m<br>2.95m (2 H)<br>2.5-2.65m (2 H)<br>                                                     | <b>4b</b><br>2.45-2.65m (2 H)<br>4.15dd (6.6, 9.1)<br>3.88m<br>2.95dd (4.9, 14.05)<br>2.83dd (6.6, 14.05)<br>2.45-2.65m (2 H)<br>                   | 4c<br>2.68m<br>2.59m<br>4.23dd (7.2, 8.9)<br>3.92d (7.2)<br>3.29dd (5.0, 13.8)<br>3.07dd (8.15, 13.8)<br>2.68dd (5.0, 12.6)<br>2.44dd (8.2, 12.6)<br>3.91s                                                   |                          |
|   | 3-H<br>4-H<br>5-H <sub>A</sub><br>5-H <sub>B</sub><br>6-H <sub>A</sub><br>6-H <sub>B</sub><br>7-H <sub>A</sub><br>7-H <sub>B</sub><br>1-H <sup>†</sup><br>OMe<br>OMe                                                              | <b>3c</b><br>2.70m<br>2.42m<br>5.39d (1.1)<br>                                                                                                                                                                                                                                               | <b>4a</b><br>2.5-2.65m (2 H)<br>4.13dd (6.35, 8.8)<br>3.89m<br>2.95m (2 H)<br>2.5-2.65m (2 H)<br>                                                     | <b>4b</b><br>2.45-2.65m (2 H)<br>4.15dd (6.6, 9.1)<br>3.88m<br>2.95dd (4.9, 14.05)<br>2.83dd (6.6, 14.05)<br>2.45-2.65m (2 H)<br>                   | 4c<br>2.68m<br>2.59m<br>4.23dd (7.2, 8.9)<br>3.92d (7.2)<br>3.29dd (5.0, 13.8)<br>3.07dd (8.15, 13.8)<br>2.68dd (5.0, 12.6)<br>2.44dd (8.2, 12.6)<br>                                                        |                          |
|   | 3-H<br>4-H<br>5-H <sub>A</sub><br>5-H <sub>B</sub><br>6-H <sub>A</sub><br>6-H <sub>B</sub><br>7-H <sub>A</sub><br>7-H <sub>B</sub><br>1-H <sup>†</sup><br>OMe<br>OMe<br>OMe                                                       | 3c<br>2.70m<br>2.42m<br>5.39d (1.1)<br>                                                                                                                                                                                                                                                      | <b>4a</b><br>2.5–2.65m (2 H)<br>4.13dd (6.35, 8.8)<br>3.89m<br>2.95m (2 H)<br>2.5–2.65m (2 H)<br>3.86s<br>3.86s<br>3.84s                              | <b>4b</b><br>2.45-2.65m (2 H)<br>4.15dd (6.6, 9.1)<br>3.88m<br>2.95dd (4.9, 14.05)<br>2.83dd (6.6, 14.05)<br>2.45-2.65m (2 H)<br>                   | 4c<br>2.68m<br>2.59m<br>4.23dd (7.2, 8.9)<br>3.92d (7.2)<br>3.29dd (5.0, 13.8)<br>3.07dd (8.15, 13.8)<br>2.68dd (5.0, 12.6)<br>2.44dd (8.2, 12.6)<br>                                                        |                          |
|   | 3-H<br>4-H<br>5-H <sub>A</sub><br>6-H <sub>A</sub><br>6-H <sub>B</sub><br>7-H <sub>A</sub><br>7-H <sub>B</sub><br>1-H <sup>†</sup><br>OMe<br>OMe<br>OMe<br>OMe<br>OMe                                                             | 3c<br>2.70m<br>2.42m<br>5.39d (1.1)<br>                                                                                                                                                                                                                                                      | <b>4a</b><br>2.5-2.65m (2 H)<br>4.13dd (6.35, 8.8)<br>3.89m<br>2.95m (2 H)<br>2.5-2.65m (2 H)<br>                                                     | <b>4b</b><br>2.45-2.65m (2 H)<br>4.15dd (6.6, 9.1)<br>3.88m<br>2.95dd (4.9, 14.05)<br>2.83dd (6.6, 14.05)<br>2.45-2.65m (2 H)<br><br>3.85s<br>3.82s | 4c<br>2.68m<br>2.59m<br>4.23dd (7.2, 8.9)<br>3.92d (7.2)<br>3.29dd (5.0, 13.8)<br>3.07dd (8.15, 13.8)<br>2.68dd (5.0, 12.6)<br>2.44dd (8.2, 12.6)<br>                                                        |                          |
|   | 3-H<br>4-H<br>5-H <sub>A</sub><br>5-H <sub>B</sub><br>6-H <sub>B</sub><br>7-H <sub>A</sub><br>7-H <sub>B</sub><br>1-H $\dagger$<br>OMe<br>OMe<br>OMe<br>OMe<br>OMe<br>OMe                                                         | 3c<br>2.70m<br>2.42m<br>5.39d (1.1)<br>                                                                                                                                                                                                                                                      | <b>4a</b><br>2.5-2.65m (2 H)<br>4.13dd (6.35, 8.8)<br>3.89m<br>2.95m (2 H)<br>2.5-2.65m (2 H)<br>                                                     | 4b<br>2.45-2.65m (2 H)<br>4.15dd (6.6, 9.1)<br>3.88m<br>2.95dd (4.9, 14.05)<br>2.83dd (6.6, 14.05)<br>2.45-2.65m (2 H)<br>                          | 4c<br>2.68m<br>2.59m<br>4.23dd (7.2, 8.9)<br>3.92d (7.2)<br>3.29dd (5.0, 13.8)<br>3.07dd (8.15, 13.8)<br>2.68dd (5.0, 12.6)<br>2.44dd (8.2, 12.6)<br>                                                        |                          |
|   | 3-H<br>4-H<br>5-H <sub>A</sub><br>5-H <sub>B</sub><br>6-H <sub>B</sub><br>7-H <sub>A</sub><br>7-H <sub>A</sub><br>7-H <sub>B</sub><br>1-H <sup>†</sup><br>OMe<br>OMe<br>OMe<br>OMe<br>OMe<br>OMe                                  | 3c<br>2.70m<br>2.42m<br>5.39d (1.1)<br>                                                                                                                                                                                                                                                      | <b>4a</b><br>2.5–2.65m (2 H)<br>4.13dd (6.35, 8.8)<br>3.89m<br>2.95m (2 H)<br>2.5–2.65m (2 H)<br>                                                     | <b>4b</b><br>2.45-2.65m (2 H)<br>4.15dd (6.6, 9.1)<br>3.88m<br>2.95dd (4.9, 14.05)<br>2.83dd (6.6, 14.05)<br>2.45-2.65m (2 H)<br>                   | 4c<br>2.68m<br>2.59m<br>4.23dd (7.2, 8.9)<br>3.92d (7.2)<br>3.29dd (5.0, 13.8)<br>3.07dd (8.15, 13.8)<br>2.68dd (5.0, 12.6)<br>2.44dd (8.2, 12.6)<br>3.91s<br>3.88s<br>3.81s<br>5.93d (0.75)<br>5.92d (0.75) |                          |
|   | 3-H<br>4-H<br>5-H <sub>A</sub><br>5-H <sub>B</sub><br>6-H <sub>A</sub><br>6-H <sub>B</sub><br>7-H <sub>B</sub><br>1-H <sup>†</sup><br>OMe<br>OMe<br>OMe<br>OMe<br>OMe<br>OMe<br>OMe                                               | 3c<br>2.70m<br>2.42m<br>5.39d (1.1)<br>                                                                                                                                                                                                                                                      | 4a<br>2.5-2.65m (2 H)<br>4.13dd (6.35, 8.8)<br>3.89m<br>2.95m (2 H)<br>2.5-2.65m (2 H)<br>                                                            | 4b<br>2.45-2.65m (2 H)<br>4.15dd (6.6, 9.1)<br>3.88m<br>2.95dd (4.9, 14.05)<br>2.83dd (6.6, 14.05)<br>2.45-2.65m (2 H)<br>                          | 4c<br>2.68m<br>2.59m<br>4.23dd (7.2, 8.9)<br>3.92d (7.2)<br>3.29dd (5.0, 13.8)<br>3.07dd (8.15, 13.8)<br>2.68dd (5.0, 12.6)<br>2.44dd (8.2, 12.6)<br>3.91s<br>3.88s<br>3.81s<br>5.93d (0.75)<br>5.92d (0.75) |                          |
|   | 3-H<br>4-H<br>5-H <sub>A</sub><br>5-H <sub>B</sub><br>6-H <sub>A</sub><br>6-H <sub>B</sub><br>7-H <sub>A</sub><br>7-H <sub>B</sub><br>1-H <sup>†</sup><br>OMe<br>OMe<br>OMe<br>OMe<br>OMe<br>OMe<br>OMe<br>OMe                    | 3c<br>2.70m<br>2.42m<br>5.39d (1.1)<br>                                                                                                                                                                                                                                                      | 4a<br>2.5-2.65m (2 H)<br>4.13dd (6.35, 8.8)<br>3.89m<br>2.95m (2 H)<br>2.5-2.65m (2 H)<br>                                                            | 4b<br>2.45-2.65m (2 H)<br>4.15dd (6.6, 9.1)<br>3.88m<br>2.95dd (4.9, 14.05)<br>2.83dd (6.6, 14.05)<br>2.45-2.65m (2 H)<br>                          | 4c<br>2.68m<br>2.59m<br>4.23dd (7.2, 8.9)<br>3.92d (7.2)<br>3.29dd (5.0, 13.8)<br>3.07dd (8.15, 13.8)<br>2.68dd (5.0, 12.6)<br>2.44dd (8.2, 12.6)<br>                                                        |                          |
|   | 3-H<br>4-H<br>5-H <sub>A</sub><br>5-H <sub>B</sub><br>6-H <sub>A</sub><br>6-H <sub>B</sub><br>7-H <sub>B</sub><br>1-H $\dagger$<br>OMe<br>OMe<br>OMe<br>OMe<br>OMe<br>OMe<br>OMe<br>OMe                                           | 3c<br>2.70m<br>2.42m<br>5.39d (1.1)<br>                                                                                                                                                                                                                                                      | <b>4a</b><br>2.5–2.65m (2 H)<br>4.13dd (6.35, 8.8)<br>3.89m<br>2.95m (2 H)<br>2.5–2.65m (2 H)<br><br>3.86s<br>3.86s<br>3.84s<br>3.82s<br><br><br><br> | 4b<br>2.45-2.65m (2 H)<br>4.15dd (6.6, 9.1)<br>3.88m<br>2.95dd (4.9, 14.05)<br>2.83dd (6.6, 14.05)<br>2.45-2.65m (2 H)<br>                          | 4c<br>2.68m<br>2.59m<br>4.23dd (7.2, 8.9)<br>3.92d (7.2)<br>3.29dd (5.0, 13.8)<br>3.07dd (8.15, 13.8)<br>2.68dd (5.0, 12.6)<br>2.44dd (8.2, 12.6)<br>                                                        |                          |
|   | 3-H<br>4-H<br>5-H <sub>A</sub><br>6-H <sub>A</sub><br>6-H <sub>B</sub><br>7-H <sub>A</sub><br>7-H <sub>B</sub><br>1-H <sup><math>\dagger</math></sup><br>OMe<br>OMe<br>OMe<br>OMe<br>OMe<br>OMe<br>OMe<br>OMe                     | 3c<br>2.70m<br>2.42m<br>5.39d (1.1)<br>                                                                                                                                                                                                                                                      | <b>4a</b><br>2.5-2.65m (2 H)<br>4.13dd (6.35, 8.8)<br>3.89m<br>2.95m (2 H)<br>2.5-2.65m (2 H)<br>                                                     | <b>4b</b><br>2.45-2.65m (2 H)<br>4.15dd (6.6, 9.1)<br>3.88m<br>2.95dd (4.9, 14.05)<br>2.83dd (6.6, 14.05)<br>2.45-2.65m (2 H)<br>                   | 4c<br>2.68m<br>2.59m<br>4.23dd (7.2, 8.9)<br>3.92d (7.2)<br>3.29dd (5.0, 13.8)<br>3.07dd (8.15, 13.8)<br>2.68dd (5.0, 12.6)<br>2.44dd (8.2, 12.6)<br>                                                        |                          |
|   | 3-H<br>4-H<br>5-H <sub>A</sub><br>5-H <sub>B</sub><br>6-H <sub>A</sub><br>6-H <sub>B</sub><br>7-H <sub>A</sub><br>7-H <sub>B</sub><br>1-H <sup><math>\dagger</math></sup><br>OMe<br>OMe<br>OMe<br>OMe<br>OMe<br>OMe<br>OMe<br>OMe | 3c<br>2.70m<br>2.42m<br>5.39d (1.1)<br>                                                                                                                                                                                                                                                      | <b>4a</b><br>2.5–2.65m (2 H)<br>4.13dd (6.35, 8.8)<br>3.89m<br>2.95m (2 H)<br>2.5–2.65m (2 H)<br>                                                     | <b>4b</b><br>2.45–2.65m (2 H)<br>4.15dd (6.6, 9.1)<br>3.88m<br>2.95dd (4.9, 14.05)<br>2.83dd (6.6, 14.05)<br>2.45–2.65m (2 H)<br>                   | 4c<br>2.68m<br>2.59m<br>4.23dd (7.2, 8.9)<br>3.92d (7.2)<br>3.29dd (5.0, 13.8)<br>3.07dd (8.15, 13.8)<br>2.68dd (5.0, 12.6)<br>2.44dd (8.2, 12.6)<br>                                                        |                          |
|   | 3-H<br>4-H<br>5-H <sub>A</sub><br>5-H <sub>B</sub><br>6-H <sub>A</sub><br>6-H <sub>B</sub><br>7-H <sub>A</sub><br>7-H <sub>B</sub><br>1-H $\dagger$<br>OMe<br>OMe<br>OMe<br>OMe<br>OMe<br>OMe<br>OMe<br>Me<br>Me<br>Me            | 3c<br>2.70m<br>2.42m<br>5.39d (1.1)<br>                                                                                                                                                                                                                                                      | <b>4a</b><br>2.5–2.65m (2 H)<br>4.13dd (6.35, 8.8)<br>3.89m<br>2.95m (2 H)<br>2.5–2.65m (2 H)<br>                                                     | <b>4b</b><br>2.45-2.65m (2 H)<br>4.15dd (6.6, 9.1)<br>3.88m<br>2.95dd (4.9, 14.05)<br>2.83dd (6.6, 14.05)<br>2.45-2.65m (2 H)<br>                   | 4c<br>2.68m<br>2.59m<br>4.23dd (7.2, 8.9)<br>3.92d (7.2)<br>3.29dd (5.0, 13.8)<br>3.07dd (8.15, 13.8)<br>2.68dd (5.0, 12.6)<br>2.44dd (8.2, 12.6)<br>                                                        |                          |
|   | 3-H<br>4-H<br>5-H <sub>A</sub><br>5-H <sub>B</sub><br>6-H <sub>A</sub><br>6-H <sub>B</sub><br>7-H <sub>A</sub><br>7-H <sub>B</sub><br>1-H <sup>†</sup><br>OMe<br>OMe<br>OMe<br>OMe<br>OMe<br>OMe<br>OMe<br>OMe                    | 3c<br>2.70m<br>2.42m<br>5.39d (1.1)<br>3.24dd (5.2, 13.6)<br>3.05dd (10.0, 13.6)<br>2.70m<br>2.39d (8.0)<br>3.50dt (4.0, 10.6)<br>3.87s<br>3.50dt (4.0, 10.6)<br>3.87s<br>3.77s<br>5.92d (1.5)<br>5.90d (1.5)<br>5.90d (1.5)<br>0.92d (5.05)<br>0.89d (5.8)<br>0.79d (6.9)<br>6.57s<br>6.44s | <b>4a</b><br>2.5–2.65m (2 H)<br>4.13dd (6.35, 8.8)<br>3.89m<br>2.95m (2 H)<br>2.5–2.65m (2 H)<br>                                                     | <b>4b</b><br>2.45-2.65m (2 H)<br>4.15dd (6.6, 9.1)<br>3.88m<br>2.95dd (4.9, 14.05)<br>2.83dd (6.6, 14.05)<br>2.45-2.65m (2 H)<br>                   | 4c<br>2.68m<br>2.59m<br>4.23dd (7.2, 8.9)<br>3.92d (7.2)<br>3.29dd (5.0, 13.8)<br>3.07dd (8.15, 13.8)<br>2.68dd (5.0, 12.6)<br>2.44dd (8.2, 12.6)<br>                                                        |                          |
|   | 3-H<br>4-H<br>5-H <sub>A</sub><br>5-H <sub>B</sub><br>6-H <sub>A</sub><br>6-H <sub>B</sub><br>7-H <sub>A</sub><br>7-H <sub>B</sub><br>1-H <sup>†</sup><br>OMe<br>OMe<br>OMe<br>OMe<br>OMe<br>OMe<br>OMe<br>OMe                    | 3c<br>2.70m<br>2.42m<br>5.39d (1.1)<br>3.24dd (5.2, 13.6)<br>3.05dd (10.0, 13.6)<br>2.70m<br>2.39d (8.0)<br>3.50dt (4.0, 10.6)<br>3.87s<br>3.77s<br>5.92d (1.5)<br>5.90d (1.5)<br>0.92d (5.05)<br>0.89d (5.8)<br>0.79d (6.9)<br>6.59d (7.8)<br>6.57s<br>6.44s<br>6.39dd (1.5, 7.9)           | <b>4a</b><br>2.5–2.65m (2 H)<br>4.13dd (6.35, 8.8)<br>3.89m<br>2.95m (2 H)<br>2.5–2.65m (2 H)<br>                                                     | 4b<br>2.45-2.65m (2 H)<br>4.15dd (6.6, 9.1)<br>3.88m<br>2.95dd (4.9, 14.05)<br>2.83dd (6.6, 14.05)<br>2.45-2.65m (2 H)<br>                          | 4c<br>2.68m<br>2.59m<br>4.23dd (7.2, 8.9)<br>3.92d (7.2)<br>3.29dd (5.0, 13.8)<br>3.07dd (8.15, 13.8)<br>2.68dd (5.0, 12.6)<br>2.44dd (8.2, 12.6)<br>                                                        |                          |
|   | 3-H<br>4-H<br>5-H <sub>A</sub><br>6-H <sub>A</sub><br>6-H <sub>B</sub><br>7-H <sub>B</sub><br>1-H <sup><math>\dagger</math></sup><br>OMe<br>OMe<br>OMe<br>OMe<br>OMe<br>OCH <sub>2</sub> O<br>Me<br>Me<br>Me<br>Me<br>Arom        | 3c<br>2.70m<br>2.42m<br>5.39d (1.1)<br>                                                                                                                                                                                                                                                      | <b>4a</b><br>2.5-2.65m (2 H)<br>4.13dd (6.35, 8.8)<br>3.89m<br>2.95m (2 H)<br>2.5-2.65m (2 H)<br>                                                     | <b>4b</b><br>2.45–2.65m (2 H)<br>4.15dd (6.6, 9.1)<br>3.88m<br>2.95dd (4.9, 14.05)<br>2.83dd (6.6, 14.05)<br>2.45–2.65m (2 H)<br>                   | 4c<br>2.68m<br>2.59m<br>4.23dd (7.2, 8.9)<br>3.92d (7.2)<br>3.29dd (5.0, 13.8)<br>3.07dd (8.15, 13.8)<br>2.68dd (5.0, 12.6)<br>2.44dd (8.2, 12.6)<br>                                                        |                          |

\* All spectra recorded in CDCl<sub>3</sub> solution. † 1-H of menthyloxy group.

furan-2(5H)-one 1 (3.95 g, 16.6 mmol, 1.21 mol equiv.), dissolved in dry THF (40 cm<sup>3</sup>), was added, via a double-ended needle, to the well stirred orange solution. Stirring was continued at -78 °C for 2 h and then pre-cooled DMI (5 cm<sup>3</sup>) was added to it, via a syringe, immediately followed by precooled 3,4-dimethoxybenzyl bromide (4.83 g, 20.9 mmol, 1.52 mol equiv.) dissolved in dry THF (40 cm<sup>3</sup>), added via a doubleended needle. The reaction mixture was stirred, and allowed to warm to room temperature overnight, before it was diluted with water (100 cm<sup>3</sup>) and extracted with EtOAc (3  $\times$  100 cm<sup>3</sup>). The combined extracts were washed with brine  $(3 \times 50 \text{ cm}^3)$ , dried (MgSO<sub>4</sub>), filtered and evaporated, to yield a yellow foam. Purification of this by flash chromatography on silica (light petroleum– $CH_2Cl_2$ ) afforded **2a** as a pale yellow foam (9.60 g, <sup>2</sup>/<sub>92%</sub>);  $[\alpha]_D^{24} - 156.9$  (c 0.362, CHCl<sub>3</sub>) (Found: C, 69.9; H, 6.9. C<sub>44</sub>H<sub>52</sub>O<sub>7</sub>S<sub>2</sub> requires C, 69.84; H, 6.8%); v<sub>max</sub>(neat)/cm<sup>-1</sup> 1780 (y-lactone);  $\lambda_{max}$ (MeOH)/nm 279.2 ( $\varepsilon$  11 283); see Tables I and 2 for <sup>1</sup>H and <sup>13</sup>C NMR data; m/z 647 (M – SPh<sup>+</sup>,

2%), 463 (8), 435 (31), 355 (9), 327 (18), 259 (Ar<sup>1</sup>CHSPh<sup>+</sup>, 100) and 151 (Ar<sup>2</sup>CH<sub>2</sub><sup>+</sup>, 100).

Preparation of (-)-(3R,4R,5R)-3-(3',4'-Methylenedioxybenzyl)-4-[3",4"-dimethoxy-α,α-bis(phenylthio)benzyl]-5-(1-menthyloxy)butyrolactone **2b**.—To a stirred and cooled (-78 °C) solution of 3,4-dimethoxybenzaldehyde diphenyl thioacetal (6.31 g, 17.1 mmol) in dry THF (100 cm<sup>3</sup>), under an argon atmosphere, was added, via a syringe, BuLi (2.30 mol dm<sup>-3</sup>; 8.57 cm<sup>3</sup>, 19.7 mmol, 1.15 mol equiv.), and stirring was then continued at -78 °C for 3 h. A pre-cooled solution of (-)-5-(1-menthyloxy)furan-2(5H)-one 1 (4.74 g, 19.9 mmol, 1.16 mol equiv.) in dry THF (50 cm<sup>3</sup>) was then added, via a double-ended needle, to the well stirred orange solution. Stirring was continued at -78 °C for 2 h before pre-cooled DMI (2.25 cm<sup>3</sup>) was added to it, via a syringe, immediately followed by precooled solution of 3,4-methylenedioxybenzyl iodide (8.39 g, 32.0 mmol, 1.87 mol equiv.) in dry THF (50 cm<sup>3</sup>), added via a

Table 2 <sup>13</sup>C NMR spectra of dibenzylbutyrolactone derivatives\*

| Carbon<br>Atom     | 2a      | 2b      | 2c      | 3a      | 3b      | 3c      | <b>4a</b> | 4b      | 4c      |
|--------------------|---------|---------|---------|---------|---------|---------|-----------|---------|---------|
| <br>C-2            | 177.31s | 177.35s | 177.15s | 177.88s | 177.92s | 177.79s | 178.76s   | 178.56s | 178.41s |
| C-3                | 47.81d  | 47.85d  | 48.11d  | 47.80d  | 47.67d  | 47.76d  | 46.49d    | 46.37d  | 45.58d  |
| C-4                | 45.48d  | 45.60d  | 43.23d  | 47.11d  | 46.82d  | 46.76d  | 41.05d    | 41.20d  | 41.70d  |
| C-5                | 99.97d  | 100.07d | 100.54d | 103.60d | 103.54d | 103.48d | 71.25t    | 71.25t  | 71.40t  |
| C-6                | 37.55t  | 37.74t  | 38.87t  | 36.29t  | 36.58t  | 37.12t  | 34.43t    | 34.70t  | 35.17t  |
| C-7                | 71.04s  | 71.25s  | 70.31s  | 37.44t  | 37.49t  | 37.41t  | 38.11t    | 38.17t  | 38.35t  |
| C-1'1″             | 132.55s | 131.07s | 132.68s | 130.54s | 131.56s | 133.01s | 130.50s   | 131.36s | 133.07s |
|                    | 130.58s | 130.65s | 131.12s | 129.83s | 129.71s | 130.80s | 130.19s   | 130.45s | 131.53s |
| C-2'2"             | 110.82d | 109.95d | 107.60d | 111.09d | 108.89d | 109.80d | 111.25d   | 109.44d | 109.77d |
|                    | 109.96d | 108.04d | 109.16d | 111.04d | 107.73d | 108.80d | 111.02d   | 108.13d | 108.60d |
| C-3'3"4'4"         | 148.69s | 148.68s | 152.21s | 148.93s | 148.88s | 152.36s | 148.95s   | 149.00s | 152.71s |
|                    | 148.58s | 148.27s | 152.21s | 148.93s | 147.74s | 150.77s | 148.21s   | 149.00s | 150.80s |
|                    | 148.10s | 147.53s | 147.86s | 147.80s | 147.68s | 147.71s | 147.85s   | 146.41s | 147.82s |
|                    | 147.69s | 146.30s | 147.86s | 147.74s | 146.15s | 146.25s | 147.77s   | 146.41s | 146.27s |
| C-5'5″             | 112.88d | 112.66d | 147.36s | 112.18d | 111.54d | 141.92d | 112.30d   | 111.63d | 142.08s |
|                    | 112.73d | 110.04d | 110.72d | 112.18d | 110.80d | 110.98d | 111.78d   | 111.24d | 111.07d |
| C-6'6″             | 121.67d | 122.83d | 122.53d | 121.13d | 121.98d | 122.01d | 121.34d   | 122.24d | 121.51d |
|                    | 120.67d | 120.74d | 109.16d | 121.01d | 121.12d | 107.92d | 120.56d   | 120.62d | 108.13d |
| OMe                | 55.59q  | 55.69q  | 61.11g  | 55.84q  | 55.73q  | 61.02q  | 55.87q    | 55.87q  | 61.11q  |
| OMe                | 55.59q  | 55.69q  | 60.90q  | 55.84q  | 55.49q  | 60.84q  | 55.87q    | 55.72q  | 60.99q  |
| OMe                | 55.54q  |         | 55.99q  | 55.74q  | '       | 53.93q  | 55.81q    |         | 56.05q  |
| OMe                | 55.54q  |         | _ `     | 55.67q  |         |         | 55.81q    |         |         |
| OCH <sub>2</sub> O | _ `     | 100.81t | 101.46t |         | 101.01t | 101.07t |           | 101.01t | 101.04t |

\* All spectra recorded in CDCl<sub>3</sub> solution. O-Menthyl and SPh groups are not listed.

Table 3 <sup>1</sup>H NMR spectra of 2,3-dibenzylbutane-1,4-diols\*

|                    | 5a                       | 5b                | 5c                |
|--------------------|--------------------------|-------------------|-------------------|
| 1-H                | 3.48-3.54m               | 3.57–3.61m        | 3.42-3.65m        |
| 4-H                |                          |                   |                   |
| 2-H                | 1.87br s                 | 1.92m             | 1.94br s          |
| 3-H                |                          |                   |                   |
| 5-H                | 2.62–2.84m               | 2.59-2.68m        | 2.80–2.94m        |
| 6-H                |                          |                   |                   |
| OMe                | 3.84s (6 H)              | 3.79s             | 3.88s             |
| OMe                | 3.81s (6 H)              | 3.76s             | 3.86s             |
| OMe                |                          | <u></u>           | 3.86s             |
| OCH <sub>2</sub> O |                          | 5.88d (1.2)       | 5.90s (2 H)       |
| 2                  |                          | 5.87d (1.2)       |                   |
|                    | 6.76 d (7.9) (2 H)       | 6.80d (8.65)      | 6.69d (7.7) (2 H) |
|                    | 6.74s                    | 6.79d (1.8)       | 6.63d (3.0)       |
| Arom               | 6.66dd (1.7, 8.65) (2 H) | 6.77d (8.3) (2 H) | 6.63s             |
|                    | 6.65s                    | 6.69d (8.05)      | 6.60s             |
|                    |                          | 6.68d (1.65)      |                   |

\* All spectra recorded in CDCl<sub>3</sub> solution.

double-ended needle. The reaction mixture was stirred, and allowed to warm to room temperature overnight, before addition of water (100 cm<sup>3</sup>) and extraction with EtOAc (3 × 100 cm<sup>3</sup>). The combined extracts were washed with brine (3 × 50 cm<sup>3</sup>), dried (MgSO<sub>4</sub>), filtered and evaporated to yield a yellow gum. Purification of this by flash chromatography on silica (light petroleum–CH<sub>2</sub>Cl<sub>2</sub>) afforded **2b** as a colourless foam (12.69 g, 100%);  $[\alpha]_{D}^{25}$  – 162.9 (c 0.712, CHCl<sub>3</sub>) (Found: C, 69.7; H, 6.7. C<sub>4.3</sub>H<sub>48</sub>O<sub>7</sub>S<sub>2</sub> requires C, 69.73; H, 6.49%);  $\nu_{max}$ (neat)/cm<sup>-1</sup> 1785 (*y*-lactone);  $\lambda_{max}$ (MeOH)/nm 280.8 ( $\varepsilon$  10 250); see Tables 1 and 2 for <sup>1</sup>H and <sup>13</sup>C NMR data; *m*/z 631 (M – SPh<sup>+</sup>, 10%), 495 (4), 447 (15), 419 (51), 339 (10), 331 (27), 259 (Ar<sup>1</sup>CHSPh<sup>+</sup>, 100%) and 135 (Ar<sup>2</sup>CH<sub>2</sub><sup>+</sup>, 100%).

Preparation of (-)-(3R,4R,5R)-3-(3',4',5'-Trimethoxybenzyl)-4-[3'',4''-methylenedioxy- $\alpha,\alpha$ -bis(phenylthio)benzyl]-5-(1menthyloxy)butyrolactone 2c.—A solution of 3,4-methylenedioxybenzaldehyde diphenyl thioacetal (4.78 g, 13.6 mmol) in dry THF (70 cm<sup>3</sup>), under an argon atmosphere, was cooled to -78 °C, and stirred. To this was added, via a syringe, BuLi (2.30 mol dm<sup>-3</sup>; 6.80 cm<sup>3</sup>, 15.6 mmol, 1.15 mol equiv.) and

Table 4 <sup>13</sup>C NMR spectra of 2,3-dibenzylbutane-1,4-diols\*

| Carbon atom        | 5a      | 5b      | 5c      |
|--------------------|---------|---------|---------|
| C-1                | 60.22t  | 60.90t  | 60.31t  |
| C-2                | 43.82d  | 43.42d  | 44.82d  |
| C-3                | 43.82d  | 43.59d  | 42.19d  |
| C-4                | 60.22t  | 60.94t  | 59.41t  |
| C-5                | 35.78t  | 35.22t  | 36.55t  |
| C-6                | 35.78t  | 35.34t  | 35.85t  |
| C-1'1″             | 133.15s | 135.26s | 135.62s |
|                    | 133.15s | 134.29s | 134.27s |
| C-2'2″             | 110.04d | 109.48d | 109.27d |
|                    | 111.04d | 108.00d | 109.27d |
| C-3'3"4'4"         | 148.74s | 149.38s | 152.26s |
|                    | 148.74s | 148.05s | 150.77s |
|                    | 147.18s | 147.70s | 147.53s |
|                    | 147.18s | 146.14s | 145.68s |
| C-5'5″             | 112.12d | 112.85d | 145.68s |
|                    | 112.12d | 111.94d | 110.10d |
| C-6'6″             | 121.00d | 122.26d | 121.86d |
|                    | 121.00d | 121.73d | 108.07d |
| OMe                | 55.84q  | 55.71q  | 61.08q  |
| OMe                | 55.84q  | 55.48q  | 60.93g  |
| OMe                | 55.79q  |         | 56.11g  |
| OMe                | 55.79a  |         | L       |
| OCH <sub>2</sub> O |         | 101.15t | 100.78t |
| 2                  |         |         |         |

\* All spectra recorded in CDCl<sub>3</sub> solution.

stirring was continued at -78 °C for 3 h. A pre-cooled solution of (-)-5-(1-menthyloxy)furan-5(2H)-one 1 (3.91 g, 16.4 mmol, 1.21 mol equiv.) in dry THF (40 cm<sup>3</sup>) was added, *via* doubleended needle, to the well stirred orange solution. Stirring was continued at -78 °C for 2 h before pre-cooled DMI (5 cm<sup>3</sup>) was added, *via* a syringe, to the mixture immediately followed by a pre-cooled solution of 3,4,5-trimethoxybenzyl bromide (5.67 g, 21.72 mmol, 1.60 mol equiv.), in dry THF (40 cm<sup>3</sup>) added, *via* a double-ended needle. The reaction mixture was stirred, and allowed to warm to room temperature overnight, before it was diluted with water (100 cm<sup>3</sup>) and extracted with EtOAc (3 × 100 cm<sup>3</sup>). The combined extracts were washed with brine (3 × 50 cm<sup>3</sup>), dried (MgSO<sub>4</sub>), filtered and evaporated to yield a yellow foam. This was purified by flash chromatography on silica (light petroleum–CH<sub>2</sub>Cl<sub>2</sub>) to give **2c** 

 
 Table 5
 <sup>1</sup>H NMR spectra of tetrahydrodibenzocyclooctene derivatives\*

|                    | 6a                 | 6b                 |
|--------------------|--------------------|--------------------|
| 5-H                | 2.42dd (9.4, 13.1) | 2.40dd (9.0, 13.2) |
| 5-H <sub>B</sub>   | 2.68d (13.1)       | 2.65d (13.2)       |
| 6-H                | 2.25m              | 2.21m              |
| 7-H                | 2.15dd (9.1, 13.0) | 2.11dd (9.3, 13.2) |
| 8-H                | 3.18d (13.4)       | 3.12d (13.8)       |
| 8-H <sub>B</sub>   | 2.33dd (9.2, 13.4) | 2.28dd (9.3, 13.8) |
| 13-H <sub>A</sub>  | 4.41dd (6.4, 8.4)  | 4.38dd (6.6, 8.4)  |
| 13-H <sub>B</sub>  | 3.80dd (8.4, 10.9) | 3.77dd (8.4, 11.4) |
| OMe                | 3.94s              | 3.92s              |
| OMe                | 3.93s              | 3.85s              |
| OMe                | 3.87s              |                    |
| OMe                | 3.87s              |                    |
| OCH <sub>2</sub> O |                    | 5.98d (1.2)        |
| 2                  |                    | 5.97d (1.2)        |
| Arom               | 6.81s              | 6.78s              |
|                    | 6.70s (2 H)        | 6.66s              |
|                    | 6.69s              | 6.66s              |
|                    |                    | 6.65s              |
|                    |                    |                    |

\* All spectra recorded in CDCl<sub>3</sub> solution.

Table 6 $^{13}$ C NMR spectra of tetrahydrodibenzocyclooctene deriva-<br/>tives \*

| Carbon atoms       | 6a       | 6b      |
|--------------------|----------|---------|
| C-1                | 113.68d  | 111.94d |
| C-2                | 148.38s  | 147.50s |
| C-3                | 148.50s  | 148.68s |
| C-4                | 113.89d  | 114.06d |
| C-4a               | 131.68s  | 132.21s |
| C-5                | 33.90t   | 34.15t  |
| C-6                | 46.57d   | 46.73d  |
| C-7                | 49.76d   | 50.05d  |
| C-8                | 31.84t   | 32.05t  |
| C-8a               | 132.09s  | 133.21s |
| C-9                | 111.47d  | 108.86d |
| C-10               | 146.86s  | 146.03s |
| C-11               | 146.94s  | 147.24s |
| C-12               | 111.78d  | 110.82d |
| C-12a              | 132.18s  | 133.60s |
| C-12b              | 130.65s  | 130.76s |
| C-13               | 69.80t   | 70.06t  |
| C-14               | 176.46s  | 176.52s |
| OMe                | 55.76g   | 55.97g  |
| OMe                | 55.76g   | 55.97g  |
| OMe                | 55.76g   |         |
| OMe                | 55.76a   |         |
| OCH <sub>2</sub> O | <b>_</b> | 101.22t |

\* All spectra recorded in CDCl<sub>3</sub> solution.

as a white solid (8.43 g, 81%), m.p. 149–151 °C;  $[\alpha]_{D^0}^{20}$  –179.9 (c 2.184, CHCl<sub>3</sub>);  $\nu_{max}(neat)/cm^{-1}$  1785 ( $\gamma$ -lactone); see Tables 1 and 2 for <sup>1</sup>H and <sup>13</sup>C NMR data; m/z 661 (M – SPh<sup>+</sup>, 1%), 477 (5), 449 (13), 369 (5), 341 (18), 243 (Ar<sup>1</sup>CHSPh<sup>+</sup>, 100%) and 181 (Ar<sup>2</sup>CH<sub>2</sub><sup>+</sup>, 100%).

Preparation of (-)-(3R,4R,5R)-3,4-Bis(3',4'-dimethoxybenzyl)-5-(1-menthyloxy)butyrolactone 3a.—NiCl<sub>2</sub>· $6H_2O$  (26.57 g, 112 mmol, 17.1 mol equiv.) was added to compound 2a (4.93 g, 6.52 mmol) dissolved in MeOH (500 cm<sup>3</sup>) and the stirred green solution was then cooled to 0 °C and NaBH<sub>4</sub> (12.78 g, 336 mmol, 51.6 mol equiv.) was added to it carefully, to minimise the effervescence produced. The black suspension was then removed from the ice-bath and thoroughly stirred at room temperature for 1 h before it was diluted with water (20 cm<sup>3</sup>) and passed through a short Celite/silica column, in order to remove the nickel salts. Water (100 cm<sup>3</sup>) was added to the resulting solution which was then extracted with diethyl ether (3 × 200 cm<sup>3</sup>). The combined extracts were dried (MgSO<sub>4</sub>), filtered and evaporated to afford **3a** as a colourless foam (3.42 g, 97%);  $[\alpha]_D^{21} - 117.2$  (*c* 1.666, CHCl<sub>3</sub>);  $\nu_{max}(neat)/cm^{-1}$  1780 ( $\gamma$ -lactone); see Tables 1 and 2 for <sup>1</sup>H and <sup>13</sup>C NMR data; *m/z* 540 (M<sup>+</sup>, 5%), 402 (10), 385 (16) and 151 (ArCH<sub>2</sub><sup>+</sup>, 100%) (Found: M<sup>+</sup>, 540.3090. C<sub>32</sub>H<sub>44</sub>O<sub>7</sub> requires *M*<sup>+</sup>, 540.3087).

Preparation of (-)-3R,4R,5R)-3-(3',4'-Methylenedioxybenzyl)-4-(3",4"-dimethoxybenzyl-5-(1-menthyloxy)butyrolactone **3b**.—NiCl<sub>2</sub>·6H<sub>2</sub>O (20.33 g, 854 mmol, 20.0 mol equiv.) was added to compound 2b (3.16 g, 4.27 mmol) dissolved in MeOH (200 cm<sup>3</sup>) and the stirred green solution was then cooled to 0 °C and NaBH<sub>4</sub> (9.74 g, 256 mmol, 60.0 mol equiv.) was added to it carefully, to minimise the effervescence produced. The black suspension was then removed from the ice-bath and thoroughly stirred for 1 h at room temperature before it was diluted with water (20 cm<sup>3</sup>) and passed through a short Celite/silica column, in order to remove the nickel salts. Water (75 cm<sup>3</sup>) was added to the resulting solution which was then extracted with diethyl ether  $(4 \times 150 \text{ cm}^3)$ . The combined extracts were dried (MgSO<sub>4</sub>), filtered and evaporated to afford 3b as a colourless foam (2.14 g, 99%);  $[\alpha]_D^{25} - 124.2$  (c 1.282, CHCl<sub>3</sub>);  $\nu_{max}(neat)/cm^{-1}$  1775 (γ-lactone);  $\lambda_{max}(MeOH)/nm$  283.2; see Tables I and 2 for <sup>1</sup>H and <sup>13</sup>C NMR data; m/z 524 (M<sup>+</sup>, 10%), 386 (4), 369 (32), 151 (Ar<sup>1</sup>CH<sub>2</sub><sup>+</sup>, 100%) and 135 (Ar<sup>2</sup>CH<sub>2</sub><sup>+</sup>, 51%) (Found: M<sup>+</sup>, 524.2774. C<sub>31</sub>H<sub>40</sub>O<sub>7</sub> requires  $M^+$ , 524.2774).

Preparation of (-)-(3R,4R,5R)-3-(3',4',5'-Trimethoxybenzyl)-4-(3",4"-methylenedioxybenzyl)-5-(1-menthyloxy)butyro lactone 3c.—NiCl<sub>2</sub>·6H<sub>2</sub>O (26.83 g, 113 mmol, 17.9 mol equiv.) was added to compound 2c (4.86 g, 6.31 mmol) dissolved in MeOH/THF (500 cm<sup>3</sup>/500 cm<sup>3</sup>) and the stirred green solution was cooled to 0 °C and NaBH<sub>4</sub> (12.50 g, 319 mmol, 52.1 mol equiv.) was added to it carefully, to minimise the effervescence produced. The black suspension was then removed from the icebath, thoroughly stirred for 1 h at room temperature and filtered through a short Celite/silica column to remove nickel salts. The resulting filtrate was diluted with water (200 cm<sup>3</sup>) and extracted with diethyl ether  $(4 \times 300 \text{ cm}^3)$ . The combined extracts were dried (MgSO<sub>4</sub>)<sub>4</sub>, filtered and evaporated, to afford **3c** as a colourless foam (3.50 g, 100%);  $[\alpha]_{\rm D}^{20} - 112.1$  (c 4.400, CHCl<sub>3</sub>);  $\nu_{max}(neat)/cm^{-1}$  1780 ( $\gamma$ -lactone); see Tables 1 and 2 for <sup>1</sup>H and <sup>13</sup>C NMR data; m/z 554 (M<sup>+</sup>, 3%), 415 (8), 399 (32), 355 (8), 181 (Ar<sup>2</sup>CH<sub>2</sub><sup>+</sup>, 34%) and 135 (Ar<sup>1</sup>CH<sub>2</sub><sup>+</sup>, 100%) (Found: M<sup>+</sup>, 554.2880.  $C_{32}H_{42}O_8$  requires  $M^+$ , 554.2880).

Preparation of (-)-Di-O-methylmatairesinol 4a.<sup>11</sup>—NaBH<sub>4</sub> (0.54 g, 14.2 mmol, 6.28 equiv.) was added, via a solid addition side-arm, to a stirred solution of compound 3a (1.22 g, 2.26 mmol) in EtOH (30 cm<sup>3</sup>) under an argon atmosphere, at 0 °C. A solution of KOH in EtOH (0.75 mol  $dm^{-3}$ ; 7.60 cm<sup>3</sup>, 5.70 mmol, 2.52 mol equiv.) was then added to the reaction mixture, via a syringe, and the stirring continued for 1 h 40 min at 0 °C. The reaction was quenched by the addition of aqueous HCl to the mixture until pH 3.0; an equal volume of water (37 cm<sup>3</sup>) was added to the resulting mixture which was then extracted with  $CH_2Cl_2$  (4 × 30 cm<sup>3</sup>). The combined extracts were stored for 24 h until lactonisation was complete (HPLC analysis). The solution was then thoroughly washed with water  $(3 \times 30 \text{ cm}^3)$ , dried (MgSO<sub>4</sub>), filtered and purified by chromatography on silica (light petroleum/CH<sub>2</sub>Cl<sub>2</sub>) using a Chromatotron. This gave 4a as a colourless foam (0.52 g, 60%);  $[\alpha]_D^{18} - 28.2$  (c 1.620, CHCl<sub>3</sub>) (Found: C, 68.2; H, 6.7. C<sub>22</sub>H<sub>26</sub>O<sub>6</sub> requires C, 68.39; H, 6.74%);  $v_{max}$ (neat)/cm<sup>-1</sup> 1780( $\gamma$ -lactone);  $\lambda_{max}$ (MeOH)/ nm 280.0 ( $\varepsilon$  12914); see Tables 1 and 2 for <sup>1</sup>H and <sup>13</sup>C NMR data; m/z 386 (M<sup>++</sup>, 16%), 236 (100) and 151

(ArCH<sub>2</sub><sup>+</sup>, 100%) (Found: M<sup>+</sup>, 386.1730.  $C_{22}H_{26}O_6$  requires  $M^+$ , 386.1729).

Preparation of (-)-Kusunokinin 4b.<sup>12,13</sup>-NaBH<sub>4</sub> (204 mg, 5.36 mmol, 10.31 mol equiv.) was added via a solid addition side-arm, to a stirred solution of compound 3b (272 mg, 0.52 mmol) in EtOH (12.8 cm<sup>3</sup>), under an argon atmosphere. A solution of KOH in EtOH (0.76 mol dm<sup>-3</sup>; 1.52 cm<sup>3</sup>, 1.16 mmol, 2.23 mol equiv.) was then added to the mixture, via a syringe, and the stirring continued for 30 min. The mixture was than treated with aqueous HCl until pH 3.0, diluted with water (14 cm<sup>3</sup>) and extracted with  $CH_2Cl_2$  (3 × 40 cm<sup>3</sup>). The combined extracts were stored for 24 h until lactone formation was complete, and then thoroughly washed with water  $(3 \times 30)$ cm<sup>3</sup>), dried (MgSO<sub>4</sub>), filtered and evaporated. Purification of the residue by chromatography on silica (light petroleum/ CH<sub>2</sub>Cl<sub>2</sub>) using a Chromatotron afforded 4b as a colourless foam (106 mg, 55%);  $[\alpha]_D^{23}$  -36.5 (c 0.211, CHCl<sub>3</sub>);  $\nu_{max}(neat)/cm^{-1}$  1780 ( $\gamma$ -lactone); see Tables 1 and 2 for <sup>1</sup>H and <sup>13</sup>C NMR data; m/z 370 M<sup>++</sup>, 26%, 151 (Ar<sup>1</sup>CH<sub>2</sub><sup>+</sup>, 69%) and 135 (Ar<sup>2</sup>CH<sub>2</sub><sup>+</sup>, 100%) (Found: M<sup>+</sup>, 370.1416. C<sub>21</sub>H<sub>22</sub>O<sub>6</sub> requires M<sup>+</sup>, 370.1416).

Preparation of (-)-Yatein 4c.14-NaBH<sub>4</sub> (0.38 g, 10 mmol, 6.53 mol equiv.) was added, via a solid addition side-arm, to a stirred solution of compound 3c (0.85 g, 1.53 mmol) in EtOH (20 cm<sup>3</sup>), under argon at 0 °C. A solution of KOH in EtOH (0.78 mol dm<sup>-3</sup>; 3.2 cm<sup>3</sup>, 2.50 mmol, 1.63 mol equiv.) was then added to the mixture, via a syringe, and stirring continued for 2.3 h at 0 °C. The mixture was then treated with aqueous HCl until pH 3.0, diluted with water and extracted with CH<sub>2</sub>Cl<sub>2</sub>  $(3 \times 30 \text{ cm}^3)$ . The combined extracts were stirred for 24 h until lactone formation was complete and then thoroughly washed with water  $(3 \times 40 \text{ cm}^3)$ , dried (MgSO<sub>4</sub>), filtered and evaporated. The product was purified on silica (light petroleum- $CH_2Cl_2$ ) using a Chromatotron to give 4c as a colourless foam  $(276 \text{ mg}, 45\%); [\alpha]_{D}^{18} - 44.2 (c 1.328, CHCl_3); v_{max}(neat)/$ cm<sup>-1</sup> 1790 ( $\gamma$ -lactone);  $\lambda_{max}$ (MeOH)/nm 286.2 ( $\epsilon$  9115); see Tables 1 and 2 for <sup>1</sup>H and <sup>13</sup>C NMR data; m/z 399 (M – H<sup>+</sup>, 20%), 181 (Ar<sup>1</sup>CH<sub>2</sub><sup>+</sup>, 34%) and 135 (Ar<sup>2</sup>CH<sub>2</sub><sup>+</sup>, 100%) (Found:  $M^+$ , 399.1420.  $C_{22}H_{24}O_7$  requires  $M^+$ , 399.1444).

Preparation of (-)-Di-O-methylsecoisolariciresinol 5a.<sup>12</sup>— LiAlH<sub>4</sub> (0.92 g, 24.2 mmol, 9.92 mol equiv.) was added, via a solid addition side-arm, to a stirred solution of compound 3a (1.32 g, 2.44 mmol) in dry THF (40 cm<sup>3</sup>), under an argon atmosphere. The reaction mixture was stirred for 3 days, after which it was cooled to 0 °C before careful quenching by the addition of wet THF, until no effervescence was observed. Water (30 cm<sup>3</sup>) was added to the mixture which was then extracted with diethyl ether  $(3 \times 50 \text{ cm}^3)$ . The combined extracts were dried (MgSO<sub>4</sub>), filtered and evaporated, to yield a white foam, which was purified on silica (CH2Cl2/EtOAc) using a Chromatotron to give 5a as a colourless gum (0.56 g, 59%);  $[\alpha]_{D}^{18}$  -32.2 (c 2.350, CHCl<sub>3</sub>) (Found: C, 67.55; H, 7.7.  $C_{22}H_{30}O_6$  requires C, 67.79; H, 7.69%);  $v_{max}(neat)/cm^{-1}$  3400 (OH);  $\lambda_{max}$ (MeOH)/nm 316.9 ( $\epsilon$  6468); see Tables 3 and 4 for <sup>1</sup>H and <sup>13</sup>C NMR data; m/z 390 (M<sup>++</sup>, 5%), 373 (32), 355 (17) and 151 (ArCH<sub>2</sub><sup>+</sup>, 100%) (Found: M<sup>+</sup>, 390.2040.  $C_{22}H_{30}O_6$  requires  $M^+$ , 390.2042).

Preparation of (-)-(2R,3R)-2-(3',4'-Methylenedioxybenzyl)-3-(3",4"-dimethoxybenzyl)butanediol **5b**.—LiAlH<sub>4</sub> (0.41 g, 1.07 mmol, 10.0 mol equiv.) was added, via a solid addition side-arm, to a stirred solution of **3b** (0.56 g, 1.07 mmol) in dry THF (30 cm<sup>3</sup>), under argon. The reaction mixture was stirred for 3 days, after which it was cooled to 0 °C before careful quenching by the addition of wet THF, until no effervescence was observed. Water (40 cm<sup>3</sup>) was added to the mixture which was then extracted with diethyl ether (4 × 50 cm<sup>3</sup>). The combined extracts were dried (MgSO<sub>4</sub>), filtered and evaporated, to yield a white foam, which was purified by using a silica plate (CH<sub>2</sub>Cl<sub>2</sub>/EtOAc) on a Chromatotron to afford **5b** as a colourless gum (188 mg, 44%);  $[\alpha]_D^{24} - 37.0$  (*c* 0.900, CHCl<sub>3</sub>) (Found: C, 67.0; H, 6.75. C<sub>21</sub>H<sub>26</sub>O<sub>6</sub> requires C, 67.38; H, 6.95%);  $\nu_{max}$ (neat)/cm<sup>-1</sup> 3405 (OH); see Tables 3 and 4 for <sup>1</sup>H and <sup>13</sup>C NMR data; *m*/*z* 374 (M<sup>++</sup>, 18%), 357 (100), 339 (59), 151 (Ar<sup>1</sup>CH<sub>2</sub><sup>+</sup>, 78%) and 135 (Ar<sup>2</sup>CH<sub>2</sub><sup>+</sup>, 48%) (Found: M<sup>+</sup>, 374.1729, C<sub>21</sub>H<sub>26</sub>O<sub>6</sub> requires *M*<sup>+</sup>, 374.1729).

Preparation of (-)-Dihydroclusin 9c.<sup>15</sup>—LiAlH<sub>4</sub> (0.81 g, 21 mmol, 10.0 mol equiv.) was added, via a solid addition side-arm to a stirred solution of 3c (1.18 g, 2.13 mmol) in dry THF (40 cm<sup>3</sup>). The reaction mixture was stirred for 3 days, after which it was cooled to 0 °C before careful quenching by the addition of wet THF. Water (50 cm<sup>3</sup>) was then added to the mixture which was then extracted with diethyl ether (3 × 50 cm<sup>3</sup>). The combined extracts were dried (MgSO<sub>4</sub>), filtered and evaporated, to yield a white foam, which was purified on a Chromatotron using a silica plate (CH<sub>2</sub>Cl<sub>2</sub>/EtOAc) to give 5c as a colourless gum (0.53 g, 62%);  $[\alpha]_{16}^{16}$  –30.6 (c 2.150, CHCl<sub>3</sub>);  $\nu_{max}(neat)/cm^{-1}$  3400 (OH); see Tables 3 and 4 for <sup>1</sup>H and <sup>13</sup>C NMR data; *m/z* 404 (M<sup>++</sup>, 17%), 387 (21), 369 (3), 181 (Ar<sup>2</sup>CH<sub>2</sub><sup>+</sup>, 58%) and 135 (Ar<sup>1</sup>CH<sub>2</sub><sup>+</sup>, 100%) (Found: M<sup>+</sup>, 404.1810. C<sub>22</sub>H<sub>28</sub>O<sub>7</sub> requires *M*<sup>+</sup>, 404.1835).

Preparation of (+)-5-Detigloyloxysteganolide C 6a.<sup>23</sup>— Freshly distilled TFA (8 cm<sup>3</sup>) was added to a mixture of 4a (241 mg, 0.625 mmol) and DDQ (286 mg, 1.26 mmol, 2.01 mol equiv.), and the purple mixture stirred at room temperature for 2 h. It was then poured onto crushed ice (50 g) and extracted with benzene ( $3 \times 50 \text{ cm}^3$ ). The combined extracts were washed with aqueous NaHSO<sub>3</sub> ( $3 \times 50$  cm<sup>3</sup>), water ( $3 \times 50$  cm<sup>3</sup>), aqueous NaOH (3  $\times$  50 cm<sup>3</sup>) and brine (3  $\times$  50 cm<sup>3</sup>) and then dried (MgSO<sub>4</sub>), filtered and evaporated, to yield a reddish brown residue (188 mg). This was purified using a Chromatotron with a silica plate (light petroleum-EtOAc) to give 6a, which was crystallised from diethyl ether to give a white solid (134 mg, 56%), m.p. 211–212 °C (lit.,<sup>24</sup> 212–213 °C);  $[\alpha]_{\rm D}^{22}$ 188.2 (c 2.164, CHCl<sub>3</sub>) (Found: C, 68.9; H, 6.28. C<sub>22</sub>H<sub>24</sub>O<sub>6</sub> requires C, 68.75; H, 6.25%);  $v_{max}(neat)/cm^{-1}$  1795 ( $\gamma$ -lactone);  $\lambda_{max}$ (MeOH)/nm 280.7 ( $\varepsilon$  22 951); see Tables 5 and 6 for <sup>1</sup>H and <sup>13</sup>C NMR data; m/z (EI) 384 (M<sup>++</sup>, 100%) (Found: M<sup>+</sup>, 384.1570. C22H24O6 requires M+, 384.1567).

Preparation of (+)-(6R,7R,12b/12aS)-6-(Hydroxymethyl)-2,3-dimethoxy-10,11-methylenedioxy-5,6,7,8-tetrahydrodibenzo-[a,c]cyclooctene-7-carboxylic Acid Lactone **6b**.—Freshly distilled TFA (7 cm<sup>3</sup>) was added to **4b** (197 mg, 0.521 mmol) and DDQ (242 mg, 1.07 mmol, 2.05 mol equiv.), and the purple mixture stirred at room temperature for 2 h. It was then poured onto crushed ice (50 g) and extracted with benzene (4 × 75 cm<sup>3</sup>). The combined organic layers were washed with aqueous NaH-SO<sub>3</sub> (3 × 30 cm<sup>3</sup>), water (3 × 20 cm<sup>3</sup>), aqueous NaOH (3 × 30 cm<sup>3</sup>), and brine (3 × 30 cm<sup>3</sup>), dried (MgSO<sub>4</sub>), filtered and evaporated, to yield a reddish brown residue (137 mg). This was purified using a Chromatotron with a silica plate (EtOAc/hexane) to give **6b** as a colourless foam (67.1 mg, 34%);  $[\alpha]_D^{22}$  90.3 (c 0.824, CHCl<sub>3</sub>);  $\nu_{max}$ (neat)/cm<sup>-1</sup> 1785 (γ-lactone); see Tables 5 and 6 for <sup>1</sup>H and <sup>13</sup>C NMR data; *m/z* (EI) 368 (M<sup>\*+</sup>, 100%) (Found: M<sup>+</sup>, 368.1260. C<sub>21</sub>H<sub>20</sub>O<sub>6</sub> requires M<sup>+</sup>, 368.1260).

## Acknowledgements

We are grateful to the Wellcome Foundation for providing financial support for this work and for running highfield and COSY NMR spectra.

# J. CHEM. SOC. PERKIN TRANS. 1 1993

# References

- 1 R. S. Ward, Chem. Soc. Rev., 1982, 75.
- 2 A. Pelter in The Shikimic Acid Pathway, ed. E. E. Conn, Plenum Press, New York, 1986, p. 201.
- 3 D. C. Ayres and J. D. Loike, Lignans, Cambridge University Press, Cambridge, 1990.
- 4 R. S. Ward, Natural Product Reports, 1993, 10, 1.
- 5 For a review, see R. S. Ward, Tetrahedron, 1990, 46, 5029.
- 6 A. Pelter, R. S. Ward and G. M. Little, J. Chem. Soc., Perkin Trans. 1, 1990, 2775.
- 7 A. Pelter, R. S. Ward, D. M. Jones and P. Maddocks, J. Chem. Soc., Perkin Trans. 1, preceding paper.
- 8 For a preliminary account of this work, see A. Pelter, R. S. Ward, D. M. Jones and P. Maddocks, Tetrahedron Asymm., 1990, 1, 857; 1992, 3, 239.
- 9 T. B. Back and K. Yang, J. Chem. Soc., Chem. Commun., 1990, 819.
- 10 R. V. Speybroeck, H. Guo, J. V. D. Eycken and M. Vandewalle, Tetrahedron, 1991, 47, 4675.
- T. Omaki, Yakagaku Zasshi, 1936, 56, 982.
   D. Takaoka, N. Takamatsu, Y. Saheki, K. Kono, C. Nakaoaka and M. Hiroi, Nippon Kagaku Kaishi, 1975, 12, 2192.

- 13 D. A. Ganeshpure and R. Stevenson, J. Chem. Soc., Perkin Trans. 1, 1981, 1681.
- 14 H. Erdtman and J. Harmathe, Phytochem., 1979, 19, 1495.
- 15 B. R. Prabhu and N. B. Mulchandani, Phytochem., 1985, 24, 329.
- 16 A. Pelter, R. S. Ward, R. Venkateswarlu and C. Kamakshi, Tetrahedron, 1991, 47, 1275.
- 17 M. Taafrout, F. Rouessac and J. P. Robin, Tetrahedron Lett., 1983, 24, 2983.
- 18 J. P. Robin, R. Dahl and E. Brown, Tetrahedron, 1984, 40, 3509.
- 19 R. P. Hicks and A. T. Sneden, Tetrahedron Lett., 1983, 24, 2987.
- 20 W. K. Kofron and L. M. Baclawski, J. Org. Chem., 1976, 41, 1879.
- 21 S. C. Watson and J. F. Eastman, J. Organometal. Chem., 1967, 9, 165.
- 22 H. C. Brown, Organic Synthesis via Boranes, 1975, Wiley, p. 241. 23 J. P. Robin, L. M. Davoust and M. Taafrout, Tetrahedron Lett., 1986,
- 24, 2871.
- 24 Y. Landais, J. P. Robin and A. Lebrun, Tetrahedron, 1991, 47, 3787.

Paper 3/02738D Received 14th May 1993 Accepted 20th July 1993